1 Exercise 1: particle decay in ϕ^{4} theory

Let $\hat{\phi}(x)$ be a quantized Hermitian scalar field describing a scalar particle χ of mass $m \neq 0$ and following a Lagrangian density:

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \hat{\phi} \partial^{\mu} \hat{\phi}-\frac{1}{2} m^{2} \hat{\phi}^{2}-\frac{\lambda}{4!} \hat{\phi}^{4} .
$$

Is it possible for a particle χ to spontaneously decay? Which is the minimum amount of decay products? Discuss your answer both in terms of dynamics (i.e., find the lowest order Feynman diagram and compute its non-vanishing amplitude using e.g. Feynman rules) and kinematics (i.e., is this process allowed in nature?).

2 Exercise 2: Relativistically invariant two-particles phase space

Show that for a two particles final state the relativistically invariant two-particles phase space is

$$
\int \mathrm{d} \Pi_{2}=\int \mathrm{d} \Omega \frac{1}{16 \pi^{2}} \frac{\left|\mathbf{p}_{\mathrm{CoM}}\right|}{E_{\mathrm{CoM}}}
$$

where $\left|\mathbf{p}_{\mathrm{CoM}}\right|$ refers to the modulus of the impulse of each of the two particles in the center of mass frame, while E_{CoM} is the total energy in the same frame. Use this formula to show that the differential cross-section for a $2 \rightarrow 2$ process of four identical particles becomes:

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{CoM}}=\frac{|\mathcal{M}|^{2}}{64 \pi^{2} E_{\mathrm{CoM}}^{2}}
$$

This formula is very relevant because it applies to any $2 \rightarrow 2$ process in the ultra-relativistic limit $(m \rightarrow 0)$ for which there is symmetry for rotation along the collision axis .

3 Exercise 3: gamma matrix identities

Let γ^{μ} be 44×4 matrices that satisfy the Clifford algebra:

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \mathbb{1}
$$

where $\eta^{\mu \nu}$ is the flat space-time metric, and let $\operatorname{Tr}()$ denote the trace of a matrix. Prove the following identities:

- $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \ldots\right)=\operatorname{Tr}\left(\ldots \gamma^{\rho} \gamma^{\nu} \gamma^{\mu}\right)$
- $\gamma^{\mu} \gamma_{\mu}=4 \mathbb{1}$
- $\gamma^{\mu} \gamma^{\nu} \gamma_{\mu}=-2 \gamma^{\nu}$
- $\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma_{\mu}=4 \eta^{\nu \rho} \mathbb{1}$
- $\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma_{\mu}=-2 \gamma^{\sigma} \gamma^{\rho} \gamma^{\nu}$

