Exercise set 5 for QFT1

November 15, 2019

1 Dirac eq solutions in Weyl representation

During the lecture we have solved Dirac's momentum equation for free, spin $1 / 2$ particles in the standard/Dirac representation of the γ matrices. Obviosuly, this is not the only possible choice. The goal of this exercise is to find the solution using Weyl's representation. Show that these solutions can be written as

$$
u^{s}(\mathbf{p})=\binom{\sqrt{E_{p} \mathbb{1}-\mathbf{p} \cdot \sigma} \xi^{s}}{\sqrt{E_{p} \mathbb{1}+\mathbf{p} \cdot \sigma} \xi^{s}} \quad v^{s}(\mathbf{p})=\binom{\sqrt{E_{p} \mathbb{1}-\mathbf{p} \cdot \sigma} \eta^{s}}{-\sqrt{E_{p} \mathbb{1}+\mathbf{p} \cdot \sigma} \eta^{s}}
$$

where it is understood that:

$$
\xi^{1}=\eta^{1}=\binom{1}{0} \quad \xi^{2}=\eta^{2}=\binom{0}{1}
$$

and the square root of an operator is obtained by appling the square root to the eigenvalue of the eigenstate. Just to be clear, if $\mathbf{p}=p \hat{z}$,

$$
u^{s}(\mathbf{p})=\binom{\left(\sqrt{E_{p}+p}\left(\frac{\mathbb{1}-\sigma_{3}}{2}\right)+\sqrt{E_{p}-p}\left(\frac{\mathbb{1}+\sigma_{3}}{2}\right)\right) \xi^{s}}{\left(\sqrt{E_{p}+p}\left(\frac{\mathbb{1}+\sigma_{3}}{2}\right)+\sqrt{E_{p}-p}\left(\frac{\mathbb{1}-\sigma_{3}}{2}\right)\right) \xi^{s}}
$$

Finally, compute the shape of the spinors $u^{1,2}$ and $v^{1,2}$ in the ultra-relativistic case (i.e., $m=0$ case). A possible solution strategy is the following: assuming $m \neq 0$, solve first the problem in the particle rest frame. Then perform a generic boost along z, using the spinor representation of the Lorentz group.

2 Weyl field theory

In a previous exercise sheet, we have shown that, if ψ_{R} and ψ_{L} are 2-dimesional right-handed and left-handed Weyl spinors, respectively, then $\psi_{R}^{\dagger} \sigma^{\mu} \psi_{R}$ and $\psi_{L}^{\dagger} \bar{\sigma}^{\mu} \psi_{L}$ are tetra-vectors under Lorentz transformations. We can then introduce two lagrangian densities:

$$
\mathcal{L}_{R}=i \psi_{R}^{\dagger} \sigma^{\mu} \partial_{\mu} \psi_{R} \quad \mathcal{L}_{L}=i \psi_{L}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi_{L}
$$

- Compute the equation of motion for each of them;
- show that each component of ψ_{R} and ψ_{L} satisfies a massless Klein-Gordon equation;
- making the ansatz, $\psi_{i}=u_{i} e^{-i p x}$ with $i=L, R$ for the positive energy states, show that a left-handed massless Weyl spinor has helicity $-1 / 2$ while a right-handed massless Weyl spinor $+1 / 2$;
- if we consider at the same time a left and a right handed spinors, show that $\psi_{L}^{\dagger} \psi_{R}$ and $\psi_{R}^{\dagger} \psi_{L}$ are Lorentz scalars;
- consider the new Lagrangian density

$$
\mathcal{L}_{D}=\mathcal{L}_{R}+\mathcal{L}_{L}-m\left(\psi_{L}^{\dagger} \psi_{R}+\psi_{R}^{\dagger} \psi_{L}\right)
$$

and compute the (two) independent equations of motion;

- prove that ψ_{L} and ψ_{R} now satify the massive Klein-Gordon equation;
- by introducing the Dirac spinor as

$$
\psi_{D}=\binom{\psi_{L}}{\psi_{R}}
$$

show that \mathcal{L}_{D} is equivalent to the Dirac lagrangian introduced in the lecture, and the equations of motion reduces to the Dirac equation;

- finally, show that $u_{L, R}$ are no longer helicity eigenstate. What is the cause of that?

3 Chiral transformations

Let ψ be a Dirac field and consider the axial-vector current

$$
j^{5, \mu}=\bar{\psi} \gamma^{5} \gamma^{\mu} \psi
$$

Prove that $j^{5, \mu}$ is conserved if and only if the field is massless (i.e. $m=0$). Which is the symmetry transformation of ψ associated to this current? This transformation is said chiral transformation and it is a symmetry only for massless fields. Bonus: if you really like Weyl fields, how can one express the chiral transformation acting on ψ in terms of its ψ_{L} and ψ_{R} ?

