Exercise set 3 for QFT1

November 5, 2019

1 The vector representation of the Lorentz group

During the lecture we have introduced the $\left(j_{-}=1 / 2, j_{+}=1 / 2\right)$ representation. This is a 4 dimensional complex representation that contains a singlet and triplet states, i.e. $\mathbf{1} / \mathbf{2} \otimes \mathbf{1} / \mathbf{2}=\mathbf{0} \oplus \mathbf{1}$. By analysing the behaviour of a tetravector under rotation we have deduced that this is the (real) vector representation, i.e.

$$
\exp \left(-\frac{i}{2} \omega_{\mu \nu} J^{\mu \nu}\right)_{\beta}^{\alpha}=\Lambda_{\beta}^{\alpha} .
$$

In this exercise we will prove it explicitly. Any element of the $(1 / 2,1 / 2)$ representation can be written as $\left(\psi_{L}, \phi_{R}\right)$ where ψ_{L} and ϕ_{R} are a left-handed and a right handed Weyl spinors, respectively. After having defined

$$
\sigma^{\mu}=\left(\mathbb{0}, \sigma^{i}\right) \quad \bar{\sigma}^{\mu}=\left(\mathbb{0},-\sigma^{i}\right)
$$

prove that

$$
\phi_{R}^{\dagger} \sigma^{\mu} \psi_{R} \quad \text { and } \quad \phi_{L}^{\dagger} \sigma^{\mu} \psi_{L}
$$

behave as contravariant vectors under Lorentz transformations. Recall the charge conjugate definitions: $\psi_{R}=i \sigma^{2} \psi_{L}^{*}$ and $\phi_{L}=-i \sigma^{2} \phi_{R}^{*}$. Additional note: since Λ is a real matrix, one can finally impose the reality conditions to all tetravectors, i.e. $V^{\mu}=\left(V^{\mu}\right)^{*}$ Hint: a possible solution is to show that the 4 components transform as a 4 -vector under Lorentz transformation. One can, for example, consider a boost along a certain spatial direction and implement the Lorentz transformations on the different Weyl spinors.

2 The Casimir operators of the Poincare‘ group

During the lecture we have stated that the Poincare ${ }^{\text {® }}$ group has two Casimir operators, P^{2} and W^{2}, where P^{μ} is the tetramomentum and W^{μ} is the PauliLubanski tetravector:

$$
W^{\mu}=-\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} J_{\nu \rho} P_{\sigma}
$$

Using the Lie algebra of the Lorentz group, prove explicitly that these two operators commute with all the generators of the group.

3 The field representation of the tetramomentum

All fields behave as a scalar under spacetime translations. If ψ denote a generic field component (i.e. a scalar field or one of the components of a multicomponent field), then

$$
\begin{align*}
x \rightarrow x^{\prime} & =x+a \\
\psi(x) \rightarrow \psi\left(x^{\prime}\right) & =\psi(x) \tag{1}
\end{align*}
$$

Show that the expression of the generator P^{μ} on the field representation, i.e. on that representation that has the infinite-dimensional space of field function $\{\psi(P)\}_{P \in V^{4}}$ as base space, is:

$$
P^{\mu}=i \partial^{\mu}
$$

To do that, one has to consider the variation of the field assuming the coordinates to stay the same while the field changes, i.e.

$$
(\delta \psi)_{0} \equiv \psi^{\prime}(x)-\psi(x)
$$

Hint: consider infinitesimal transformations.

