Exercise set 2 for QFT1

November 5, 2019

1 QM recap: the harmonic oscillator

The harmonic oscillator is one of the fundamental QM systems and plays a key role also in QFT. This exercise provides a recap of some fundamental aspects of it. Consider a one-dimensional system described by a state vector $|\psi\rangle$ belonging to an Hilbert space \mathcal{H} and whose Hamiltonian is given (in the Schroedinger picture) by

$$
\hat{H}_{\mathrm{S}}=\frac{\hat{p}_{\mathrm{S}}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{q}_{\mathrm{S}}^{2}
$$

where \hat{p}_{S} and \hat{q}_{S} are the impulse and the displacement operators such that

$$
\left[\hat{q}_{\mathrm{S}}, \hat{p}_{\mathrm{S}}\right]=i
$$

If

$$
\hat{a}_{\mathrm{S}} \equiv \sqrt{\frac{m \omega}{2}}\left(\hat{q}_{\mathrm{S}}+\frac{i}{m \omega} \hat{p}_{\mathrm{S}}\right) \quad \text { and } \quad \hat{N}_{\mathrm{S}}=\hat{a}_{\mathrm{S}}^{\dagger} \hat{a}_{\mathrm{S}}
$$

show that:

- \hat{H}_{S} and \hat{N}_{S} share a common basis of eigenstates $\left\{\left|n_{i}\right\rangle\right\}$ (here labeled by \hat{N}_{S} eigenvalue) of the Hilbert space \mathcal{H} and find the relation between their eigenvalues;
- $n_{i} \geq 0$;
- for properly normalized eigenstates,

$$
\begin{array}{r}
\hat{a}_{\mathrm{S}}\left|n_{i}\right\rangle=\sqrt{n_{i}}\left|n_{i}-1\right\rangle \\
\hat{a}_{\mathrm{S}}^{\dagger}\left|n_{i}\right\rangle=\sqrt{n_{i}+1}\left|n_{i}+1\right\rangle
\end{array}
$$

Given the above properties, n_{i} must be integer and there must be a ground state $|0\rangle$ such that $a_{\mathrm{S}}|0\rangle=0$. Express the whole basis of \mathcal{H} in terms of $|0\rangle$ and a_{S}^{\dagger} and compute the matrix elements $\langle m| \hat{q}_{\mathrm{S}}|n\rangle$ and $\langle m| \hat{p}_{\mathrm{S}}|n\rangle$. Finally compute the temporal evolution in the Heisenberg picture, i.e. find the expressions of $\hat{q}_{\mathrm{H}}(t)$ and $\hat{q}_{\mathrm{H}}(t)$ in terms of \hat{q}_{S} and \hat{q}_{S} by solving the Heisenberg equations.

2 The Lorentz group

Consider the set of Poincaré transformations over the spacetime $\mathcal{G}=\{T(\Lambda, a)\}$ with Λ a Lorentz matrix and a a translation tetravector. Show that \mathcal{G} is a group. In doing so, find the composition rule for

$$
T\left(\Lambda_{2}, a_{2}\right) T\left(\Lambda_{1}, a_{1}\right)
$$

show that $\Lambda_{2} \Lambda_{1}$ is a Lorentz matrix, and find the expression for the inverse element. Set $a=0$ (i.e. consider the homogeneous Lorentz group). Starting from the Lie algebra deduced in the lecture

$$
\left[J^{\mu \nu}, J^{\rho \sigma}\right]=i\left(\eta^{\nu \rho} J^{\mu \sigma}-\eta^{\mu \rho} J^{\nu \sigma}-\eta^{\nu \sigma} J^{\mu \rho}+\eta^{\mu \sigma} J^{\nu \rho}\right)
$$

and from the definitions of $\mathbf{J}, \mathbf{K}, \mathbf{J}^{+}, \mathbf{J}^{-}$:

$$
\begin{array}{r}
J^{i} \equiv \frac{1}{2} \epsilon^{i j k} J^{j k} \\
K^{i} \equiv J^{i 0} \\
\mathbf{J}^{+} \equiv \frac{\mathbf{J}+i \mathbf{K}}{2} \\
\mathbf{J}^{-} \equiv \frac{\mathbf{J}-i \mathbf{K}}{2}
\end{array}
$$

proof their commutation relations:

$$
\begin{array}{r}
{\left[J^{i}, J^{j}\right]=i \epsilon^{i j k} J^{k}} \\
{\left[J^{i}, K^{j}\right]=i \epsilon^{i j k} K^{k}} \\
{\left[K^{i}, K^{j}\right]=-i \epsilon^{i j k} J^{k}}
\end{array}
$$

and

$$
\begin{array}{r}
{\left[J^{+, i}, J^{+, j}\right]=i \epsilon^{i j k} J^{+, k}} \\
{\left[J^{-, i}, J^{-, j}\right]=i \epsilon^{i j k} J^{-, k}} \\
{\left[J^{+, i}, J^{-, j}\right]=0}
\end{array}
$$

